Development and Psychometric Testing of the Turkish Immunosuppressive Medication Adherence Scale Zeliha Özdemir Köken¹ , Melek Serpil Talas¹ , Derya Gökmen² ¹Department of Surgical Nursing, Hacettepe University School of Nursing, Ankara, Turkey ²Department of Biostatistics, Ankara University School of Medicine, Ankara, Turkey # **Abstract** 120 **Objective:** The monitoring of immunosuppressive medication adherence is an important issue for solid organ transplant patients. In Turkey, there has been no valid and reliable measurement tool specific to transplantation for evaluation of medication adherence. The aim of this methodological study was to develop and psychometrically test Immunosuppressive Medication Adherence Scale. **Materials and Methods:** The Immunosuppressive Medication Adherence Scale was developed, and its validity and reliability were examined using data from 200 solid organ transplant patients. An expert panel evaluated the content validity, and factor analysis was used to evaluate the construct validity. Internal consistency analysis was performed to evaluate the reliability of the scale, and item-total correlations were evaluated. **Results:** As a result of exploratory factor analysis, all 11 items were found to be collected in a single dimension, and factor loadings varied between 0.32 and 0.87. All scale items had a good positive significant correlation with the total scale score. Content validity was evidenced by obtaining the views of 13 experts (0.80 content validity index). Cronbach's α was 0.61. **Conclusion:** The Immunosuppressive Medication Adherence Scale has acceptable internal consistency, good content, and construct validity. The scale is appropriate for use in clinical practice settings and research to evaluate immunosuppressive medication adherence of solid organ transplant patients. Keywords: Immunosuppressive agents, medication adherence, organ transplantation, scale development Corresponding Author: Zeliha Özdemir Köken \boxtimes ozdemir.z@hotmail.com Received: 14.05.2018 Accepted: 28.07.2018 **Presented in:** This study was presented at the "Turkish Transplantation Centers Coordination Association XI. Congress", "13-15 October 2016", "Konya, Turkey". Cite this article as: Özdemir Köken Z, Talas MS, Gökmen D. Development and Psychometric Testing of the Turkish Immunosuppressive Medication Adherence Scale. Turk J Nephrol 2019; 28(2): 120-6. # INTRODUCTION The aims of immunosuppressive treatment in solid organ transplantation are to prevent graft rejection, maintain graft function, lengthen graft and patient survival durations, and increase patients' quality of life. The fact that organ transplant patients have to use multiple immunosuppressive drugs continuously or for many years causes difficulties with medication adherence. Various adherence rates for immunosuppressive drug use have been reported for organ transplant patients (1-3). According to a meta-analysis, the rate of immunosuppressive medication adherence in all transplantation types was 19%-25% (1). Another study reported an immunosuppressive medication adherence rate of 37.9% for a sample comprising patients with heart, lung, kidney, and liver transplants (2). Furthermore, medication adherence in patients who had undergone heart, lung, and liver transplantations has been found to vary between 23.9% and 70% (4). Medication adherence is defined by the World Health Organization as "the extent to which the patient's behavior coincides with the clinical prescriptions" (5). It means that the drug prescribed is used consistently according to the time, dose, and frequency recommended by the health professional during the period determined. Medication nonadherence is present when the drugs are not taken at the specified dose, time, and interval, and when doses are missed or postponed, or not taken at all (2, 5-9). Nonadherence is an important factor that negatively affects the success of treatment and quality of life and increases the costs of health care. To prevent graft rejection, lengthen graft and patient survival durations, and increase patients' quality of life, the evaluation of medication adherence using standard measurement methods is imperative. Various methods are used in the evaluation of medication adherence. These methods are classified as direct and indirect methods. Direct methods include drug concentration monitoring, monitoring of metabolite levels in the blood or urine assays, and observing directly that the patient takes the drug. Indirect methods include interviewing the patient, self-report, counting tablets, monitoring prescription records, electronic monitoring, patient journals, questionnaires, and interviewing patients' relatives (5, 9-16). Self-report method is feasible, uncomplicated, and inexpensive so it is considered as the most practical and convenient method to evaluate medication adherence. Self-report is also one of the best measures of adherence for detection of both missed doses and erratic timing of medication (7, 9, 17). Each of direct and indirect methods has its advantages and disadvantages. Therefore, using a combination of current methods is usually recommended to evaluate adherence, instead of a single method (7, 12, 17). It has been shown that combining self-reporting, assay, and a clinician's report yielded the highest sensitivity and specificity compared with electronic monitoring (16). There are only a few valid, reliable, and globally applicable measurement tools for evaluating immunosuppressive medication adherence that are specifically designed for patients who have undergone solid organ transplantation. In Turkish society, no valid and reliable measurement tool that is specific to the transplantation field has been found in Turkish. A valid and reliable measurement tool for Turkish solid organ transplant patients is needed. Therefore, we developed an Immunosuppressive Medication Adherence Scale for evaluating adherence in solid organ transplant patients so that nonadherence could be identified at an early stage to prevent the development of relevant complications and problems. # **MATERIALS AND METHODS** # **Study Design** The study was conducted as a methodological study to develop and psychometrically test an immunosuppressive medication adherence measure for solid organ transplant patients. # **Setting and Sample** The study was conducted at a university hospital's organ transplantation center in Ankara, Turkey between January 2015 and July 2015. Participants comprised adult and adolescent transplant patients who had sufficient responsibility to administer their immunosuppressive medication and ability to use the drugs without help; participants were being followed up at the organ transplantation center. The number of participants included in the study sample was calculated using the item numberxpatient number formula (10-30 patients required for each item in the scale). Therefore, the study sample needed to include at least 10 patients for each item of the scale (20×10=200) (18, 19). The numbers of heart, liver, and kidney transplant patients in the total sample were determined by stratified sampling (proportional sample allocation) of the number of patients who had undergone solid organ transplantation and were being followed up at the hospital where the study was conducted. Accordingly, 150 kidney transplant patients, 35 liver transplant patients, and 15 heart transplant patients were included in the study. Inclusion criteria were as follows: (a) aged ≥13 years, (b) having completed the second month of follow-up after solid organ transplantation, (c) ability to use the drugs without help, (d) lack of any problem preventing communication, (e) lack of a psychological or mental problem, and (f) agreeing to participate in the study. Data from face-to-face interviews (lasting on average 20-25 min) were collected by the investigator. An information sheet was used to collect sociodemographic and medical information data, and the Immunosuppressive Medication Adherence Scale was administered. # **Scale Development Process** The Immunosuppressive Medication Adherence Scale was developed based on the instrument development guidelines by DeVellis and Tezbasaran (20, 21) (Figure 1). # **Initial Item Development** Views of experts in the transplant field, and patients who had undergone solid organ transplantation, were obtained. A semi-structured questionnaire with four open-ended questions for experts (definition and measurement of medication adherence, kinds of medication adherence problems, and reasons for medication nonadherence) and four open-ended questions for patients (definition of medication adherence, kinds of challenges of using immunosuppressives, methods of using immunosuppressives regularly, and reasons for medication nonadherence) was developed by the investigator after a literature review. The semi-structured questionnaire was administered in face-to-face interviews with 40 patients who had undergone solid organ transplantation (10 heart, 15 kidney, and 15 liver transplantations) and 10 specialists (3 organ transplantation coordinators, 4 transplantation nurses, and 3 physicians working in the field of transplantation). A literature review regarding the subject was performed to determine the characteristics to be measured. The expressions to be potentially included in the scale were written in accordance with data obtained from the semi-structured questionnaires and the literature review; a pool of 20 items for evaluation of immunosuppressive medication adherence was developed. Likert-type grading (5-point and 2-point scales) was used when scoring. Individuals selected the statement they found appropriate from "yes" and "no" for 2-point scale type and from expressions "never," "rarely," "sometimes," "often," and "always" for 5-point scale. # **Preliminary and Trial Administration** The scale and information sheet were administered to a total of 15 patients who had undergone a total of 8 kidney, 5 liver, and 2 heart transplantation procedures and who were using immunosuppressive drugs at transplantation outpatient departments. The clarity and applicability of the scale and information sheet were tested during the preliminary administration. The final version of the scale was administered to 200 patients who met the inclusion criteria at transplantation outpatient departments. #### **Scale Validity** Content validity and construct validity measurement methods were used as a validity criterion method to determine whether the Immunosuppressive Medication Adherence Scale accurately reflected the measured characteristics. Expert reviewers assessed the content validity of the Immunosuppressive Med- ication Adherence Scale. Factor analysis was used to evaluate construct validity. Exploratory factor analysis (EFA) was used to reveal the dimensional structure of the measurement tool when analyzing categorical data. The weighted smallest squares method, based on polychoric and tetrachoric correlations, was used in the analysis of categorical data, considering the answer categories of the items (22). Items with a factor loading <0.30 were removed from the measurement tool. Medication adherence statistics were used when deciding the number of dimensions necessary for items included in the measurement tool. # **Scale Reliability** Internal consistency analysis was used to evaluate the reliability of the scale. Cronbach's α was calculated as a prediction of internal consistency of the measurement tool (23). Additionally, item–total correlations were calculated. | Characteristics | Number | % | |---|---------|------| | Year (minimum=13, maximum=65, average=36.95±13.9) | | | | 13-19 | 29 | 14.5 | | 20-34 | 57 | 28.5 | | 35-49 | 74 | 37.0 | | 50-65 | 40 | 20.0 | | Gender | | | | Female | 86 | 43.0 | | Male | 114 | 57.0 | | Marital Status | | | | Married | 114 | 57.0 | | Single | 86 | 43.0 | | Educational Status | | | | Primary school | 96 | 48.0 | | High school | 57 | 28.5 | | University and above | 47 | 23.5 | | Transplanted organ | | | | Heart | 15 | 7.5 | | Liver | 35 | 17.5 | | Kidney | 150 | 75.0 | | Donor Type | | | | Cadaveric donor | 60 | 30.0 | | Living donor | 140 | 70.0 | | Time since transplantation (Min=3 months, Max=19 years, average=5.3±4.5) | | | | 0-2 years | 73 36.5 | | | 3-9 years | 92 | 46.0 | | 10 years and above | 35 | 17.5 | | Immunosuppressive drugs used* | | | | Prednisolone | 175 | 87.5 | | MMF | 108 | 54.0 | | Tacrolimus | 107 | 53.5 | | Mycophenolate Sodium | 70 | 35.2 | | Cyclosporine | 44 | 22.0 | | Sirolimus | 37 | 18.5 | | Everolimus | 8 | 4.0 | | Azathioprine | 4 | 2.0 | | Immunosuppressive drug type used | | | | Single drug | 13 | 6.5 | | Two drugs combined | 25 | 12.5 | | Three drugs combined | 162 | 81.0 | *N was doubled and the percentages determined according to N. First, a pool of 20 items for evaluation of immunosuppressive medication adherence was developed. Eight items in the scale were not appropriate for measurement of the desired characteristic and the statistical analysis; thus, owing to the lack of variety in the answers, they were directly removed from the scale. One item (item number 5) was eliminated following analysis of the validity and reliability of the 12-item scale, leaving 11 items in the final version of the scale. Likert-type grading (5-point and 2-point scales) was used. One point was an indicator of a negative attitude, and 5 points indicated a positive attitude in both the 5-point and 2-point scales. The minimum and maximum scores that can be obtained from the scale of 11 questions are 11 and 55, respectively. # **Ethical Considerations** Ethical approval was obtained from a university ethics committee (dated 11/28/2014, no. 99950669/345), and permission was received from the university hospital where the study was conducted. Furthermore, informed consent was obtained from the participants and the parents of adolescent patients aged 13-18 years after the aims of the study and the voluntary nature of participation were explained and confidentiality was ensured in accordance with the Declaration of Helsinki. # **Statistical Analysis** The Statistical Package for the Social Sciences for Windows version 11.5 (SPSS Inc., Chicago, IL, USA) software program was used for evaluation of data and statistical analysis. Regarding descriptive statistics, categorical data were expressed as frequency and percentages, and continuous variables were expressed as arithmetic mean±standard deviation. Cronbach's α and item–total score correlations were calculated in the reliability analysis of the scale. Construct validity of the scale was investigated using EFA. The MPlus 6.1 trial version was used for administration of the EFA (24). The statistical significance limit was accepted as 0.05. #### **RESULTS** ### **Participant Characteristics** The mean age of the 200 participants was 36.95 ± 13.9 years, with 37% (n=74) in the 35-49 years age group and 14.5% (n=29) in the 13-19 years age group. Males composed 57.0% (n=114) of all participants, 57.0% (n=114) were married, and the educational level was primary school in 48.0% (n=96). The transplanted organ was the kidney in 75.0% (n=150) of participants, the liver in 17.5% (n=35), and the heart in 7.5% (n=15). Transplantation was performed from a living donor in 70.0% (n=140) of cases. The time since transplantation was 0-2 years in 36.5% (n=73) of participants and 3-9 years in 46.0% (n=92) of participants. Prednisolone was used by 87.5% (n=175). Mycophenolate mofetil was used by 54.0% of participants, tacrolimus was used by 53.5%, and a combination of three drugs was used by 81.0% (n=163) (Table 1). The Instrument **Table 2.** Factor loadings of the Immunosuppressive Medication Adherence Scale items | Order | Items | Factor
Loads | |-------|---|-----------------| | 1 | Item 1: Do you ever forget to take your immuno-
suppressive drug? | 0.47 | | 2 | Item 2. Do you ever quit taking immunosuppressive drugs without consulting your physician when you feel good? | 0.87 | | 3 | Item 6. Do you ever interrupt taking immunosup-
pressive drug or miss the dose due to your daily
activities (such as school or work)? | 0.33 | | 4 | Item 9. Do you take your immunosuppressive drug you forgot to take immediately when you remember (within 2-3 hours)? | 0.58 | | 5 | Item 11. Do you ever delay purchasing new ones when your immunosuppressive drugs are finished? | 0.72 | | 6 | Item 12. Do you adjust the time you take your immunosuppressive drugs according to your meal times? | 0.48 | | 7 | Item 13. Do you ever interrupt taking your drugs because using immunosuppressive drugs every day challenges you? | 0.71 | | 8 | Item 14. Do you ever interrupt taking your drugs
because using multiple immunosuppressive
drugs challenges you? | 0.73 | | 9 | Item 16. Considering the past two weeks, have you ever taken your immunosuppressive drug doses less than recommended? | 0.78 | | 10 | Item 18. Considering the past two weeks, have you ever missed/ skipped your immunosuppressive drug dose? | 0.32 | | 11 | Item 19. Considering the past two weeks, have you ever received your immunosuppressive drug a couple of hours earlier or after the normal time? | 0.43 | # **Validity Analysis** #### **Content validity** Expert reviewers evaluated the content validity. A total of 20 items were submitted for review by 13 experts. The experts evaluating the content validity consisted of three pharmacists, one kidney–liver transplant surgeon, one heart transplant surgeon, one nephrologist, one cardiologist, one gastroenterologist, one specialist in surgical nursing, one specialist in internal medicine nursing, one Turkish language specialist, one assessment-evaluation specialist, and one biostatistics specialist. The experts were asked to grade each item as "necessary," "useful, but insufficient," or "unnecessary" and to explain their reasons for suggesting changes and marking any items as "unnecessary." After receiving the experts' reviews, the content validity ratio (CVR) was calculated for each item using the following formula: **Table 3.** Immunosuppressive Medication Adherence Scale item-total score relationships | | Total Score | | |---------------|-------------|-------| | Scale Item No | r | Р | | Item 01 | 0.41 | 0.001 | | Item 02 | 0.41 | 0.001 | | Item 06 | 0.45 | 0.001 | | Item 09 | 0.45 | 0.001 | | Item 11 | 0.46 | 0.001 | | Item 12 | 0.44 | 0.001 | | Item 13 | 0.65 | 0.001 | | Item 14 | 0.42 | 0.001 | | Item 16 | 0.48 | 0.001 | | Item 18 | 0.38 | 0.001 | | Item 19 | 0.58 | 0.001 | CVR = $\frac{N_G}{N/2} - 1$, where N_G is the number of experts who selected the "necessary" option, and N is the total number of experts (25). According to the formula, items yielding a CVR value of zero or less are removed from the scale. For items with a positive score, only those with a level of significance of α = \geq 0.05 were retained to simplify calculations. Accordingly, the minimum CVR was calculated as 0.54; there were no items with a CVR score <0.54 in the final scale. Finally, the content validity index (CVI) of the 20-item scale was calculated. To calculate the CVI, the formula CVI= Σ CVR/item number was used (25). The CVI calculated for 20 items was 0.80, and the content validity of the scale was found to be statistically significant with a result of 0.80 (CVI) \geq 0.54 (CVO). # **Construct validity** When the answers received after the trial administration were investigated, eight of the items were found not to be appropriate due to the lack of variety in the answers given; these were excluded from the statistical analysis. EFA was used for categorical data, revealing a dimensional structure that consisted of 12 items after the 8 items were eliminated. The factor loadings of the variables were evaluated to reveal the structural characteristic of the variables in the EFA. When the factor loadings of the items were investigated, they were found to vary between 0.32 and 0.87. We ensured that the items had a minimum factor loading of 0.30. Item number 5 (Do you ever not take your immunosuppressive drugs with you while you go out or during travel?) had a factor loading <0.30 and was removed from the measurement tool at this stage. The items and their factor loadings are presented in Table 2. # **Reliability Analysis** Internal consistency analysis was used to evaluate the scale's reliability, and item–total correlations were investigated. The Cronbach's α calculated for 11 remaining items was 0.61. When item–total correlations were investigated, all items included in the scale were found to show a significant positive correlation with the total score. Item–total correlations are presented in Table 3. #### DISCUSSION A standardized scale should have the two properties of reliability and validity. The present study psychometrically tested the Immunosuppressive Medication Adherence Scale to investigate whether the scale could be used as a standard measurement instrument. The total scale score of each participant consists of the total of answers given to each item in the Likert-type scale. Therefore, all items should be scored. Scoring varies depending on whether an item is positive or negative. The negative items are scored inversely to positive items. Thus, high scale scores always show a positive attitude (21). Both 5-point and 2-point Likert-type scoring were used in the present study. # **Validity and Reliability** **Content validity:** The content validity was investigated to determine whether the items adequately represented the immunosuppressive medication adherence of solid organ transplant patients (26, 27). The initial 20-item scale, prepared according to the results obtained from the semi-structured questionnaire and literature review, was submitted to 13 experts for review. At the end of the content analyzes, the validities for the 20-item scale were provided with a result of 0.80 CVI. Construct validity: Construct validity is demonstrated by the degree to which the measurement tool correctly captures the desired concept and the degree to which scale items relate to the factor(s) they attempt to measure (26, 27). The most commonly used construct validity method is factor analysis (21, 27). This method was also used in the evaluation of the construct validity of the scale. The EFA was conducted for categorical data to reveal the dimensional structure of the 12-item scale measurement tool. The factor loadings of the variables were evaluated with this analysis, and the items were found to collect along a single dimension. Despite different views regarding what the factor loads should be, it is generally reported that this value should be at least 0.30 (26, 27). The items, with the exception of item number 5 that was removed from the scale, had a minimum factor load of 0.30. In conclusion, to ensure construct validity, it was decided that the most appropriate analysis according to the items and factor loadings was a single-factor structure. **Scale reliability:** Reliability is an indicator of how effectively the items included in a measurement tool consistently measure the characteristic in relation to each other (21, 27). Various techniques can be used for calculation of scale reliability, and one is selected according to the study conditions and aims (26). Internal consistency analysis was conducted to evaluate the reliability of the scale, and item-total correlations were investigated. Cronbach's α is recommended to determine the reliability of a Likert-type scale. It is a measure of the internal consistency of scale items (21, 23), and it is more valuable when focusing on measuring a single characteristic and a single factor. The alpha value for each dimension should be calculated separately in scales with more than one dimension. The EFA that was performed over the 12 items revealed the items collected along a single dimension. The Cronbach's α calculated for 11 remaining items, after one item was eliminated due to a low factor loading, was 0.61. The evaluation threshold of the Cronbach's α can vary according to the qualification of the criterion (20, 26, 28, 29). According to the criterion employed to evaluate the alpha coefficient, the following were used: 0.00≤α<0.40 indicated that the scale is not reliable, 0.40≤α<0.60 indicated that the scale has low reliability, 0.60≤α<0.80 indicated that the scale is relatively reliable, and 0.80≤α<1.00 indicated that the scale is highly reliable (30). In addition, Cronbach's alpha of ≥0.6 was interpreted as acceptable by methodologist (28, 29). Item-total correlations were also investigated within scale reliability, and all of the scale questions were found to have a significant positive correlation with the total score (Table 3). The internal consistency coefficient and item-total correlations indicated that the scale was reliable. # Clinical Usage of the Turkish Immunosuppressive Medication Adherence Scale In the transplant clinical settings, to prevent graft rejection and lengthen graft and patient survival durations, the evaluation of medication adherence using standard measurement methods is imperative. Self-report is considered as the most practical and inexpensive method to evaluate medication adherence for detection of both missed doses and erratic timing of medication (7, 9, 17). In Turkish society, there is a critical need to identify nonadherent transplant recipients with a feasible and uncomplicated self-report scale. The present study provides a noninvasive, valid, and reliable instrument that measures immunosuppressive medication adherence needed in the clinical settings. When the patients visit the outpatient clinic, the scale can be completed easily and quickly by the patients. It can provide valuable information about nonadherent patients and give an opportunity to health professionals to identify reasons of nonadherence. The Immunosuppressive Medication Adherence Scale should be used with other indicators of adherence, such as immunosuppressant serum concentrations and graft organ function tests. # Limitations The inclusion of three different transplantation groups (heart, liver, and kidney) in the sample groups created a limitation with regard to sample homogeneity. It is thought that the Cronbach's α is 0.61 because of the involvement of three different organ transplant patients in the study. #### CONCLUSION Based on data obtained from the study, the Immunosuppressive Medication Adherence Scale was shown to be valid and reliable for evaluation of immunosuppressive medication adherence in solid organ transplant patients. This scale is recommended in the evaluation and follow-up of medication adherence in Turkish patients who have undergone solid organ transplantation and in studies for determining the rates of medication adherence of patients who use immunosuppressive drugs. Furthermore, studies testing the scale's validity and reliability in other countries could be performed within the scope of cultural adaptation research, and it could be used in clinical environments and studies in the relevant countries after the adaptation studies are conducted. **Ethics Committee Approval:** Ethics Committee approval was received for this study from the Ethics Committee of Turgut Özal University (28.11.2014, 99950669/345). **Informed Consent:** Written informed consent was obtained from the patients who participated in this study. Peer-review: Externally peer-reviewed. **Author Contributions:** Concept – Z.Ö.K., M.S.T.; Design - Z.Ö.K., M.S.T., D.G.; Supervision - Z.Ö.K., M.S.T.; Resource - Z.Ö.K.; Materials - Z.Ö.K.; Data Collection and/or Processing - Z.Ö.K.; Analysis and/or Interpretation - Z.Ö.K., M.S.T., D.G.; Literature Search – Z.Ö.K.; Writing – Z.Ö.K.; Critical Reviews - Z.Ö.K., M.S.T. **Acknowledgements:** The authors thank the hospital team for their help with the administration of the research and Professor Gökhan Moray for reviewing the study. **Conflict of Interest:** The authors have no conflicts of interest to declare. **Financial Disclosure:** This work was supported by Hacettepe University, Coordinatorship of Scientific Research Projects (TDK-2015-7103). # **REFERENCES** - 1. Dew MA, Di Martini AF, De Vito Dabbs A, Myaskovsky L, Steel J, Unruh M, et al. Rates and risk factors for nonadherence to the medical regimen after adult solid organ transplantation. Transplantation 2007; 83: 858-73. [CrossRef] - 2. Germani G, Lazzaro S, Gnoato F, Senzolo M, Borella V, Rupolo G, et al. Nonadherent behaviors after solid organ transplantation. Transplant Proc 2011; 43: 318-23. [CrossRef] - Kung M, Koschwanez HE, Painter L, Honeyman V, Broadbent E. Immunosuppressant nonadherence in heart, liver, and lung transplant patients: Associations with medication beliefs and illness perceptions. Transplantation 2012; 93: 958-63. [CrossRef] - 4. De Bleser L, Matteson M, Dobbels F, Russell C, De Geest S. Interventions to improve medication-adherence after transplantation: A systematic review. Transpl Int 2009; 22: 780-97. [CrossRef] - World Health Organization. Adherence to long-term therapies (Internet). Geneva: World Health Organization; 2003. Available from: http://www.who.int/chp/knowledge/publications/adherence_report/en/ - 6. Brown MT, Bussell JK. Medication adherence: WHO cares? Mayo Clin Proc 2011; 86: 304-14. [CrossRef] - 7. Fine R, Becker Y, De Geest S, Eisend H, Ettengere R, Evanset R, et al. Nonadherence consensus conference summary report. Am J Transplant 2009; 9: 35-41. [CrossRef] - Haynes RB, Ackloo E, Sahota N, McDonald HP, Yao X. Interventions for enhancing medication adherence. Cochrane Database Syst Rev 2008; CD000011. [CrossRef] - Morrissey PE, Flynn ML, Lin S. Medication noncompliance and its implications in transplant recipients. Drugs 2007; 67: 1463-81. [CrossRef] - 10. Balkrishnan R. The importance of medication adherence in improving chronic-disease related outcomes: What we know and what we need to further know. Med Care 2005; 43: 517-20. [CrossRef] - 11. De Bleser L, Dobbels F, Berben L, Vanhaecke J, Verleden G, Nevens F, et al. The spectrum of nonadherence with medication in heart, liver, and lung transplant patients assessed in various ways. Transpl Int 2011; 24: 882-91. [CrossRef] - 12. Dobbels F, Berben L, De Geest S, Drent G, Lennerling A, Whittaker C, Kugler C. The psychometric properties and practicability of self-report instruments to identify medication nonadherence in adult transplant patients: A systematic review. Transplantation 2010; 90: 205-19. [CrossRef] - Ho PM, Bryson CL, Rumsfeld JS. Medication adherence: Its importance in cardiovascular outcomes. Circulation 2009; 119: 3028-35. [CrossRef] - 14. Laufs U, Rettig-Ewen V, Bohm M. Strategies to improve drug adherence. Eur Heart J 2011; 32: 264-8. [CrossRef] - Russell C, Conn V, Ashbaugh C, Madsen R, Wakefield M, Webb A, et al. Taking immunosuppressive medications effectively (TIMELink): A pilot randomized controlled trial in adult kidney transplant recipients. Clin Transplant 2011; 25: 864-70. [CrossRef] - 16. Schafer-Keller P, Steiger J, Bock A, Denhaerynck K, De Geest S. Diagnostic accuracy of measurement methods to assess non-adherence to immunosuppressive drugs in kidney transplant recipients. Am J Transplant 2008; 8: 616-26. [CrossRef] - 17. DiMatteo MR. Variations in patients' adherence to medical recommendations: A quantitative review of 50 years of research. Med Care 2004; 42: 200-9. [CrossRef] - 18. Guadagnoli E, Velicer WF. Relation of sample size to the stability of component patterns. Psychol Bull 1988; 103: 265-75. [CrossRef] - 19. MacCallum RC, Widaman KF, Zhang S, Hong S. Sample size in factor analysis. Psychol Methods 1999; 4: 84-99. [CrossRef] - 20. DeVellis RF. Scale Development Theory and Applications, 3rd edn. USA, Washington DC: SAGE Publications; 2014. - 21. Tezbasaran A. Likert Scale Preparation Guide. Mersin: Association of Turkish Psychologist, 2008. - 22. Suhr DD. Exploratory or confirmatory factor analysis? Colorado: University of Northern Colorado, 2006. - 23. Cronbach LJ, Warrington WG. Time-limit tests: Estimating their reliability and degree of speeding. Psychometrika 1951; 16: 167-88. [CrossRef] - 24. Muthen & Muthen: MPlus (Version 6). Los Angeles, CA; 2006. - 25. Lawshe CH. A quantitative approach to content validity. Pers Psychology 1975; 28: 563-75. [CrossRef] - 26. Sencan H. Social and Behavioral Measures of Reliability and Validity. Ankara, Turkey: Seckin Publishing, 2005. - 27. Tavsancil E. Measurement of Attitudes and Data Analysis with SPSS 2014. Ankara, Turkey: Nobel Academic Publishing, 2014. - 28. Norman GR, Streiner DL. Biostatistics: The Bare Essentials. St Louis: Mosby, 1994. - 29. Nunnally JC, Bernstein IH. Psychometric Theory (3rd ed). USA, New York: McGraw-Hill, 1994. - Alpar R. Applied Statistics With Examples in Spor, Health and Educational Sciences and Validity-Reliability. Ankara, Turkey: Detay Anatolia Academic Publishing, 2010.