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Abstract

Autosomal dominant polycystic kidney disease (ADPKD), characterized by the development of multiple cysts in the kid-
neys and other organs, is the most common hereditary renal disorder and the fourth leading cause of end-stage renal dis-
ease. In adults with a positive family history, the diagnosis of ADPKD is made based on the radiologic evidence of bilateral,
fluid-filled renal cysts. Furthermore, initial symptoms including pain, increased thirst, polyuria, nocturia, and increased
urinary frequency may lead to the diagnosis of ADPKD. An easily accessible, applicable, and cost-effective biomarker is
needed to predict the clinical course of ADPKD due to its progressive pattern. Urine is an easily obtainable and widely used
test specimen for diagnosis and follow-up in several renal diseases. Thus, the aim of the present study was to review and

assess new urinary biomarkers and urinary findings in ADPKD.
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INTRODUCTION

Autosomal dominant polycystic kidney disease (ADPKD)
is one of the common genetic causes of end-stage re-
nal disease (ESRD) (1). It is also a systemic disorder that
is characterized by renal and extrarenal involvement
(2). ADPKD is caused by mutations in either of the two
genes encoding the plasma membrane-spanning poly-
cystin 1 (PKD1) and polycystin 2 (PKD2). Polycystin 1 is
a membrane receptor and plays a role in maintaining
intracellular responses active in several pathways. Poly-
cystin 2 acts as a calcium-permeable channel. Moreover,
polycystins regulate tubular and vascular development
in the kidneys and other organs (liver, brain, heart, and
pancreas) (3-5).

The two types of ADPKD have similar pathological and
physiological features. However, type Il ADPKD has a lat-
eronset of symptoms and a slower rate of progression to
ESRD (6). Although the proposed gene PKD3 has not yet
been determined, some patients with typical features of
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ADPKD have no mutations in PKD1 or PKD2, suggesting
that there is a rare third form of the disease (7, 8).

The diagnosis of ADPKD is made based on the radiolog-
ic evidence of bilateral, fluid-filled renal cysts in adults
with a positive family history. Ultrasonography findings
have revealed cysts measuring =21 cm in diameter and
that ADPKD is highly sensitive to be diagnosed in adults
(9). Moreover, the presence of =3 (unilateral or bilateral)
renal cysts is enough for establishing a diagnosis in in-
dividuals aged 15-39 years, =2 cysts in each kidney for
subjects aged 40-59 years, and =4 cysts in each kidney
for subjects aged 260 years belonging to families with
unknown genotype (10).

Several clinical complaints might be related to ADPKD
and lead to the diagnosis of the disease. In particular,
increased thirst, polyuria, nocturia, urinary frequency,
and urinary concentrating defects are the most com-
mon initial symptoms and functional abnormalities of
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ADPKD (11). It is plausible to find a cheaper, applicable, and
easily accessible biomarker to predict the clinical course of AD-
PKD due to its progressive pattern. Urine is one of the important
materials for finding a noninvasive prognostic and therapeutic
monitoring test for renal diseases. Here the aim of the present
study was to review and discuss the urinary abnormalities in
ADPKD as well as to assess new urinary biomarkers and urinary
findings in ADPKD.

Urine Osmolality

The antidiuretic hormone arginine vasopressin (AVP) plays an
important role in osmoregulation. AVP is secreted by the pitu-
itary gland and activates the V2 receptors of renal collecting
duct cells when the plasma osmolality increases (12); in turn,
this activation induces the translocation of aquaporin 2 to the
luminal surface of these cells, making them permeable to wa-
ter (13). AVP is needed in the physiological stimulation of water
reabsorption, and it also plays an important role in the patho-
physiology of ADPKD (14). A large-scale trial showed that block-
ing the AVP V2 receptor with a V2 receptor antagonist leads to
a reduced rate of cyst growth and renal function decline in pa-
tients with ADPKD (15, 16). It is widely established that a urine
osmolality of <285 mosM/kg H,0, or lower than plasma osmo-
lality, reflects adequate suppression of AVP (17, 18).

Similar to other causes of chronic kidney disease (CKD), a defect
in the kidney’s capacity to conserve water has been described
in patients with ADPKD (11, 19). Vasopressin-resistant renal
concentrating defect has been shown in ADPKD prior to the de-
terioration of kidney function (20). Urine concentrating defect
is one of the common clinical findings in patients with ADPKD
(21). Decreased urinary osmolality, which may be caused by the
disruption of the renal architecture by the cysts, is thought to
interfere with the countercurrent exchange and multiple mech-
anisms in the kidney regardless of age, glomerular filtration
rate, and solute excretion in patients with ADPKD (22, 23).

Gabow et al. (11) suggested that a defect in the extracellular ma-
trix in ADPKD affects renal epithelial transport or vasopressin
responsiveness, thus producing a concentrating defect. More-
over, structural abnormalities in the polycystic kidneys might
affect the physics of the concentrating mechanism and pro-
duce a concentrating defect. The urinary concentration defect
that develops as the disease progresses is thought to be due to
impaired renal medullar osmolar gradient by cyst formation in
patients with ADPKD. This lack of renal concentrating capacity
is expected to lead to a lower urine osmolality, a higher plasma
osmolality, and a compensatory high level of AVP. Clinically, it
has been observed that in the later stages of the disease, urine
osmolality can indeed be low, whereas AVP is high (11-14). In-
terestingly, Ho et al. (24) reported that patients with ADPKD
show both a central and peripheral defect in osmoregulation
early in the course of the disease. They identified a central de-
fect, which parallels the expression of polycystic kidney disease
genes in hypothalamic neurons that synthesize and release AVP
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as a novel extrarenal manifestation of ADPKD (24). The results
of this study provided insights into the role of polycystinsin the
brain and are relevant when considering treatments targeting
AVP in ADPKD.

Hematuria

Hematuria is the most common presenting symptom of ADPKD,
usually occurring before the loss of kidney function and is fre-
quently associated with cyst wall calcifications on renalimaging
(1, 25). It develops in 35%-50% of patients with ADPKD through-
out their life and can be acute. It is commonly associated with
infection or severe physical activity and acute cyst expansion.
It generally presents with local pain, fever, and dysuria without
infection (1, 2, 25). When these symptoms occur, it is important
to eliminate pyelonephritis, nephrolithiasis, and lower urinary
tract infections (UTls), particularly in women.

Rupture of a cyst into the collecting system is the most common
cause of macroscopic and microscopic hematuria in ADPKD.
Hematuria due to cyst rupture tends to improve within approx-
imately 1 week with conservative therapy. Rarely, hematuria
can persist for several weeks and can be more severe requiring
interventional therapy modalities including transcatheter renal
arterial embolization, transfusion, or nephrectomy (26).

Patients with ADPKD and gross hematuria have increased total
kidney volume (TKV). Hematuria is also closely associated with
rapid disease progression and hypertension. Gross hematuria
may have an unfavorable effect on long-term renal function,
possibly reflecting accelerated cyst expansion (25, 27). More-
over, frequent episodes of gross hematuria may accelerate re-
nal function decline, by causing acute kidney injury (AKI) and/
or chronic iron toxicity. Cyst ruptures with gross hematuria may
lead to the release and deposition of free iron and heme, pro-
moting the generation of reactive oxygen species and proin-
flammatory cytokines (25, 28).

Although most patients report trauma or strict exercise as pos-
sible triggers, a precise association has not been identified be-
tween such triggering mechanisms and the condition. Although
polycystic kidneys are quite resistant to traumatic damage,
mild trauma may lead to intrarenal or retroperitoneal bleeding,
which may present with intense pain and require administra-
tion of aggressive medical therapy, especially narcotics (29-31).

When gross hematuria first occurs after the age of 50 years, ma-
lignancy should be screened. However, gross hematuria can
be associated with renal or extrarenal hemorrhage or bleeding
into the urinary collecting system, which may be detected via
computerized tomography (CT) or magnetic resonance imag-
ing. Acute clots in the collecting system may result in severe
renal pain. In such a situation, hydration to increase the urinary
flow rate to 2-3 L/day, rest, and analgesics are recommended.
Patients should be informed regarding self-treatment options
for repeated episodes. Hematuria generally decreases to micro-
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scopic levels in a few days. The use of antiplatelet or anticoag-
ulants should be avoided in the absence of a strong indication
in patients with a history of gross hematuria (2, 32, 33). Gabow
et al. (25) found that male athletes with ADPKD who participat-
ed in contact sports have more hematuria episodes and devel-
op kidney failure faster than those who did not participate in
such sports. Thus, all patients with ADPKD should be warned to
avoid sports that may cause abdominal trauma.

Cysts are associated with excessive angiogenesis indicated by
fragile vessels stretched across their distended walls. These ves-
sels present an array of malformations, including aneurysms and
spiral shapes. Hemorrhage may occur spontaneously in the cyst
due to these vessels, and the cysts can enlarge rapidly resulting
in severe pain (34, 35). Gabow et al. (25) investigated the clinical
profiles of patients with ADPKD and showed that patients with
ADPKD and visible hematuria have increased TKV and worse renal
function. These results suggest that visible hematuria has an un-
favorable effect on long-term renal function, which might reflect
accelerated cyst expansion. In addition, it has been hypothesized
that recurrent gross hematuria results in tubular obstruction and
triggers the fibrotic process by disrupting the renal parenchyma.
It appears that the relationship with hematuria and disease pro-
gression affects each other vice versa (21, 25). According to the
current literature, there is no method (except urine microscopic
evaluation of the characteristics of red blood cells) to differen-
tiate the origin of the blood. Direct microscopic evaluation may
help to distinguish the origin of red blood cells, that is, whether
they are from the superior or inferior urinary system.

Additionally, the coincidence of hematuria, overt proteinuria,
and rapid renal dysfunction in patients with ADPKD may be re-
lated to proliferative glomerulonephritis and rapidly progres-
sive glomerulonephritis, including an antineutrophil cytoplas-
mic antibody-associated crescentic glomerulonephritis (36, 37).

Proteinuria

Proteinuria usually occurs at mild to moderate levels in approx-
imately 25% of patients with ADPKD. The presence and severity
of proteinuria is a negative prognostic risk factor and is asso-
ciated with greater prevalence of increased TKV, hypertension,
and renal deterioration (38, 39). Urinary albumin excretion
(UAE) was positively correlated with TKV and negatively cor-
related with estimated glomerular filtration rate (eGFR) in the
HALT Progression of Polycystic Kidney Disease study at baseline
(40). Thus, it is proposed that increased levels of UAE are a valu-
able predictive marker of ADPKD severity before renal function
decline. Higher levels of proteinuria were also associated with a
faster decline in GFR among patients with ADPKD in the Modifi-
cation of Diet in Renal Disease study (41).

Chapman et al. (38) reported that approximately 20% of 270 pa-
tients with ADPKD have overt proteinuria (>300 mg/day), which
is associated with worse renal function, hypertension, and in-
creased TKV. Patients with overt proteinuria reached a serum
creatinine level of 1.5 mg/dL at a significantly younger age com-
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pared with those with mild proteinuria. Additionally, microal-
buminuria was observed in 20 out of 49 patients with ADPKD,
hypertension, and left ventricular hypertrophy. Blood pressure
and TKV were significantly higher in patients with microalbu-
minuria. In addition, the degree of albuminuria was correlated
with TKV and kidney volume growth rate in a study of 100 young
patients with ADPKD and preserved renal function (42). Meijer
et al. (43) showed a high prevalence of microalbuminuria in
young adult patients with ADPKD.

If proteinuria exceeds 1 g/day, the possibility of another indepen-
dent glomerular disease should be considered. The association
of nephrotic syndrome (NS) with ADPKD is very rare (44, 45) and,
if possible, needs to be investigated further to exclude coexist-
ing glomerular disease. The determination of the exact reason
of proteinuria in this subgroup of patients often requires kidney
biopsy. Indeed, there are some cases of ADPKD associated with
NS; focal segmental glomerulosclerosis is the most common pre-
sented type of NS in this population (45). In addition, proteinuria
may not be specific to ADPKD; it may be the result of CKD.

Pyuria

Although it is quite common in patients with ADPKD, the etiol-
ogy, incidence, and clinical implications of pyuria are not well
identified. Asymptomatic pyuria often persists or relapses with-
out treatment in ADPKD (46). The microorganisms in the urine
cultures of these patients with asymptomatic pyuria are similar
in UTls (47). This suggests that asymptomatic pyuria is a type of
subclinical bacterial infection in patients with ADPKD. Chronic
asymptomatic pyuria may also increase the risk of developing
overt UTI and may contribute to the deterioration of kidney
function in ADPKD. It has been well established that chronic UTI
is an important risk factor for renal function decline (47). In ad-
dition, women are more susceptible to UTI than men as with
the general population, and they also have a higher incidence
of parenchymal and cyst infections in the ADPKD population
(48). Radiologic and urologic evaluation is needed in male pa-
tients with ADPKD. Acute pyelonephritis and symptomatic cyst
infection indicate hospitalization, with positive blood or urine
cultures. Coliforms are the most common detected pathogens.
Antibiotics are administered intravenously until fever and renal
pain cease for these infections in both sexes (2, 49).

The diagnosis of cystic infections may be difficult in the pres-
ence of hemorrhage. Positron emission tomography-CT allows
us to distinguish hemorrhages from cystic infections (50, 51).
Evidence from CT scans suggests that intracystic hemorrhage,
shown as hyperdense subcapsular cysts, is present in 90% of
patients with ADPKD (1, 52).

UTl is a risk factor for renal progression in patients with ADP-
KD (53). A recent study showed that asymptomatic pyuria and
overt UTI were associated with rapid decline in renal function,
but it is unclear whether this result was independent of other
factors, such as baseline GFR and TKV (53).
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Urinary Calculi

The prevalence of urinary calculi is greater in patients with ADP-
KD than in the general population (54). Kidney stone formation
has been reported in 20%-36% of patients with ADPKD (54, 55).
Uric acid is the major constituent of stones in patients with AD-
PKD, with an incidence of approximately 60% among patients
with ADPKD and urinary calculi (54, 56). Calcium oxalate-con-
taining stones occur less frequently, with an incidence that is
lower than that in the general population (56). Risk factors for
stone formation in ADPKD include metabolic abnormalities
and anatomic obstruction with resultant urinary stasis (57, 58).
There is also a relationship between nephrolithiasis and an in-
creased number and size of renal cysts in patients with ADPKD,
suggesting that compression associated with distortion of the
medullary architecture results in urinary stasis (57). Urinary
citrate excretion, which is decreased in patients with ADPKD
before the loss of kidney function, may be an important con-
tributing factor (57-59). A crucial risk factor for uric acid stone
formation in patients with ADPKD is a low urinary pH. Urinary
pH has been shown to be <5.5 in >50% of patients with ADP-
KD and is independently associated with urinary calculi (59).
The ionization constant (pKa) for uric acid is 5.5 (60); therefore,
when the urine pH is <5.5, urine becomes supersaturated with
undissociated uric acid that precipitates, forming uric acid
stones (61). The low urine pH in ADPKD may be attributed to
a defective ammonium excretion (20, 62). Other important risk
factors for increased urinary calculi in patients with ADPKD in-
clude low urine flow states or low fluid intake, hypercalciuria,
and hyperuricosuria similar to non-ADPKD population (54, 63).

Nishiura et al. (59) reported that hyperuricosuria is less prev-
alent in ADPKD, with an incidence similar to normal subjects.
Moreover, they found that hyperoxaluria is significantly higher
in patients with ADPKD, particularly those with urinary calcu-
li. The higher percentage of hyperoxaluria and hypocitraturia
in ADPKD is reported by other studies (54, 57). These findings
remain to be explained. In addition, most patients with ADPKD
and urine calculi had a urinary pH of <5.5, either spontaneously
(62% of them) or after NH4Cl load (30% of them), indicating that
a low rather than a high urine pH has been commonly observed
in these patients, which is consistent with previous reports (20,
54, 56, 64, 65). Indeed, patients with ADPKD and urine calculi
exhibited lower ammonium excretion after NH4Cl load than
healthy subjects, suggesting that there is a possible defect in
ammonium excretion (61, 62), similar to the one observed in
uric acid stone formers (61). It has been suggested that ammo-
nium excretion defect predisposes the formation of uric acid
stones (56). However, hyperuricosuria was only found in three
out of 28 patients with ADPKD and renal calculi (59).

In addition to hypocitraturia and aciduria, some urinary meta-
bolic abnormalities including hypomagnesuria and low urine
volume also predispose stone formation in ADPKD (54, 57). Even-
tually, the targets should be placed on not only treating nephro-
lithiasis but also predisposing metabolic and structural factors.
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Urine Biomarkers

Although there is ongoing research, specific therapies for AD-
PKD are still lacking, and one of the challenges is the absence
of appropriate biomarkers to predict and monitor disease pro-
gression before significant impairment occurs (21). Currently,
TKV is a widely accepted marker for disease progression; how-
ever, it is expensive and unavailable worldwide (66). Therefore,
it is plausible to find cheaper, applicable, and easily accessible
biomarkers to predict the clinical course of ADPKD due to its
progressive pattern.

Urine, as a well-accessible compartment, appears to be an ideal
material for finding a noninvasive prognostic and therapy moni-
toring test for renal diseases. Cystogenesis in ADPKD is a unique
process characterized by abnormalities in fluid secretion, tubu-
lar cell proliferation, extracellular matrix formation, apoptosis,
and cell polarity (67, 68). The process results in an impaired fil-
tration barrier, diminished tubular reabsorption, upregulation
of tubular proteins, and release of markers by recruited cells,
which can be detected in the urine of patients with ADPKD (69).
Therefore, the application of a noninvasive urine biomarker is
needed to understand the pathophysiological processes and
potential therapeutic options for these patients (70). Moreover,
the recent focus of interest has shifted toward urine biomarkers
in patients with ADPKD (Table 1).

Urinary angiotensinogen (UAGT), a marker of intrarenal renin an-
giotensin system (RAS), has been shown to be associated with hy-
pertension in patients with ADPKD (71). This finding suggests that
UAGT is a potential novel biomarker of intrarenal RAS status in pa-
tients with hypertension with ADPKD. Moreover, UAGT levels may
be an applicable and useful index to predict future cardiovascular
complications and progressive kidney disease in patients with AD-
PKD. In addition, Park et al. (72) reported that UAGT is positively
correlated with TKV and negatively correlated with eGFR.

Neutrophil gelatinase-associated lipocalin (NGAL) is a member
of superfamily of lipocalin proteins, which is expressed in the
lung, kidney, and gastrointestinal system. It plays a role in iron
transport, epithelial differentiation pathways, inflammation,
and cell proliferation in the kidneys (73). NGAL expression in-
creases in kidney epithelial cells in response to injury. In addi-
tion, the predictive value of urinary NGAL levels has been shown
for AKI occurrence in several studies in many populations rath-
er than ADPKD (74, 75). NGAL levels are thought to increase in
urine as ADPKD kidneys show inflammation, cyst proliferation,
and kidney enlargement. More recently, it has been reported in
two different studies that urinary NGAL excretion is mildly and
stably elevated in ADPKD, but does not correlate with changes
in TKV or kidney function (70, 76). However, Vareesangthip et
al. (77) demonstrated a negative correlation between urinary
NGAL and eGFR in patients with ADPKD. Similarly, Bolignano
et al. (78) reported markedly higher urinary NGAL levels in pa-
tients with ADPKD at the late stage than in healthy volunteers.
Meijer et al. (79) found a correlation between urinary NGAL lev-
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Table 1. Urine parameters and biomarkers in autosomal dominant polycystic kidney disease

Biomarker

Association/Change

Urine osmolality

Urine osmolality reduced in ADPKD (680+14 mOsm/kg) compared to non-ADPKD sub-
jects (812+13 mosm/kg).

Hematuria The incidence of gross hematuria is increased in ADPKD patients and it is associated with
rapid renal disease progression.

Proteinuria Microalbuminuria and mild proteinuria is associated with cardiovas- cular disease and
renal function decline and increased total kidney volume.

Pyuria Asymptomatic pyuria is associated with urinary tract infection and precedes kidney
function deterioration.

Urine pH Urinary pH <5.5 occurs in >50% of patients with ADPKD and it is inde- pendently associat-

ed with urinary calculi, particularly uric acid stones.

Hypocitraturia, hyperoxaluria, hypercalciuria

Hypocitraturia, hyperoxaluria, and hypercalciuria were observed in ADPKD patients.

Urinary angiotensinogen

Increased urinary angiotensinogen levels in patients with ADPKD, par- ticularly hyperten-
sive ones and correlated with total kidney volume.

Urinary neutrophil gelatinase-associated lipo- calin

Urinary NGAL is mildly elevated ADPKD patients compared to healthy controls and some
studies found correlation with total kidney volume and decreased eGFR.

Urinary interleukin-18

Urinary IL-18 is mildly elevated in ADPKD patients.

Urinary complement proteins

Urinary complement changes: Increased levels of factor B (CFB), SERP- ING1 and C9 and
decreased levels of complement componentl, C1RL, CD55 and CD59 were correlated
with the different stages of ADPKD.

Urinary proteomics

These marker proteins, most of which were collagen fragments, such as uromodulin were
found at significantly different levels in ADPKD patients than controls.

Secreted Frizzled-related

protein 4

SFRP4 was detected in the urine of both ADPKD patients and animals with PKD.

Hyperphosphaturia

The tubular maximum of phosphate reabsorption per glomerular filtration rate was
found to be lowest in 100 ADPKD patients in compar- ison with 20 non-diabetic CKD
patients, 26 diabetic patients and 20 healthy controls.

Urinary copeptin

Urinary copeptin/urinary creatinine is associated with the TKV and eGFR which is harbin-
ger of disease severity in ADPKD

Urinary fetuin alpha

Urinary Fetuin-A levels were significantly higher in 66 ADPKD patients compared to 17
healthy volunteers and 50 control patients with renal diseases of other causes.

Urine micro-RNA

Primary cell cultures were obtained from urine specimens of 20 patients with ADPKD and
20 patients with CKD. The abundance of mir- 223; mir-199a and mir-199b in ADPKD urine
cells have been reported.

Urinary heparin-binding EGF-like growth factor

Urinary HB-EGF excretion and plasma concentration were higher in 27 patients with
ADPKD than in 27 controls and it is correlated with disease severity in ADPKD.

rin-binding epidermal growth factor-like growth factor

eGFR: Estimated glomerular filtration rate; mir: microRNA; ADPKD: Autosomal dominant polycystic kidney disease; NGAL: Neutrophil gelatinase-associated lipocalin; IL-18: In-
terleukin-18; CFB: Complement factor B; SERPING 1: Serpin Family G Member 1 (The human complement factor 1-inhibitor gene); C9: Complement factor 9; C1RL: Complement
Clrsubcomponent Like; sSFRP4: Secreted frizzled-related protein 4; CKD: Chronic kidney disease; PKD: Polycystic kidney disease; TKV: Total kidney volume; HB-EGF: Hepa-

els with TKV in a cohort of 102 patients with ADPKD. Briefly, uri-
nary NGAL levels may increase only in advanced disease, and
data about the predictive role of NGAL in ADPKD are not enough
in the current literature.

Interleukin-18 (IL-18), a member of the IL-1 family of cytokines,
is synthesized as an inactive 23-kDa precursor by several tissues

including monocytes, macrophages, and proximal tubular ep-
ithelial cells and is processed into an active 18.3 kDa cytokine
by caspase-1 (80). It has been demonstrated that urinary IL-8
could be a biomarker of AKI (81). Several clinical trials have fo-
cused on the diagnostic accuracy of IL-18 level in predicting AKI
in recent years (82-84). Urinary IL-18 is elevated during apopto-
sis and necrosis of renal tubular cells, which is associated with
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AKl in animal and human studies. Parikh et al. (70) demonstrat-
ed that urine IL-18 levels are mildly elevated in patients with
ADPKD, but do not correlate with changes in kidney function
and TKV. They speculated that urine IL-18 levels are enriched
in cyst fluid derived from patients with ADPKD, demonstrating
the translation of the findings from murine and rat models to
human disease (70).

Recently, the role of complement system activation has been
thought to berelated in ADPKD. Furthermore, it has been shown
that substantial amounts of complement proteins are present
in the renal cyst fluid of patients with ADPKD (85). In this regard,
over a hundred different glycoproteins and glycopeptides in the
urine were identified; however, significant expression chang-
es were only observed in six complement components in the
urine from patients with ADPKD by using a robust quantitative
proteomics screen. In conclusion, it has been found that the
increased levels of urinary complement components comple-
ment factor B, SERPING1, and C9, and the decreased levels of
complement component 1, r subcomponent-like, CD55, and
CD59 were correlated with the different stages of ADPKD (86).

Multidimensional nuclear magnetic resonance (NMR) spectros-
copy was used to investigate the urine specimens of patients
with ADPKD and compared with those of healthy controls (87).
In the present study, the authors showed that the support vec-
tor machine-based classification of urinary NMR fingerprints
yielded to discriminate patients with early-stage ADPKD from
patients with ESRD and healthy subjects (87, 88). In addition to
the NMR-based metabolomics approach pursued in the present
study, urinary proteomics has been successfully applied to the
prediction of ADPKD. There were many proteins with signifi-
cantly altered urinary excretion, most of which were collagen
fragments. Uromodulin peptides, previously implicated in tu-
bular injury, were also found in urine specimens. These marker
proteins were found to distinguish patients from controls with
a high degree of accuracy (89). The coupling of capillary elec-
trophoresis to mass spectrometry allowed the identification of
a unique set of proteins serving as reliable biomarkers for the
prediction of ADPKD. The use of NMR-based metabolomics of-
fers the additional advantage of only minimal required sample
pretreatment and easy sample handling, enabling fast and fully
automatic data collection (88).

Secreted frizzled-related protein 4 (sFRP4) expression pro-
motes cyst formation in ADPKD. sFRP4 is induced by a similar
mechanism that antagonizes the Wnt signaling cascade as a
differentially regulated gene in cystogenesis. Cyst fluid from
ADPKD kidneys activates the production of sFRP4 protein in
renal tubular epithelial cell lines (90, 91). Vasopressin 2 re-
ceptor antagonism resulted in a decrease of promoter activity
and tubular sFRP4 expression. Moreover, sFRP4 was found in
the urine of patients and animals with ADPKD, indicating that
sFRP4 may be a potential biomarker for monitoring the pro-
gression of ADPKD (92).
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Fibroblast growth factor 23 (FGF23) associated with increased
phosphate levels in urine is substantially higher in patients
with ADPKD than in other patients with CKD (93). Moreover,
polycystin 1 is highly expressed in osteoblasts and osteocytes,
which are the main sources for FGF23 production (94). It could
be hypothesized that polycystin 1 is directly involved in the
regulation of FGF23 production and that mutant polycystin 1
is responsible for the increased FGF23 secretion in ADPKD. The
finding of elevated FGF23 levels in ADPKD with normal renal
function, normal parathyroid hormone, and renal leak of phos-
phate represents an early manifestation of ADPKD (93).

It has been well established that patients with ADPKD already
have decreased urinary concentration capacity (43) and that
plasma osmolality is maintained within the normal range at
higher plasma copeptin and AVP levels (23). Plasma copeptin is
elevated in patients with ADPKD and predicts disease progres-
sion (95, 96). Nakajima et al. (97) showed that urinary copept-
in/u-Cr is closely associated with the two important markers of
disease severity in ADPKD (positively with TKV and negatively
with eGFR). They suggested that U-copeptin/u-Cris a preferable
and easily measured surrogate marker to help predict disease
progression in ADPKD.

Fetuin alpha (FETUA) expression is restricted to the liver in
adults; however, it is expressed in many organs including the
kidney, brain, liver, bone, lungs, and heart in the fetal period
(98). Despite the absence of FETUA mRNA genetically, the FET-
UA protein has been detected in proximal tubule epithelial cells
of rat kidneys in a previous study (99). Thus, it is speculated that
FETUA may reach proximal tubule cells by reabsorption from
the tubule lumen after passing from plasma through the glo-
merular filtration barrier (99, 100). Recently, Piazzon et al. (101)
observed higher urinary FETUA levels in patients with ADPKD
than in healthy controls.

MicroRNAs (miRs) are noncoding, small RNA molecules that
modulate gene expressions by regulating many different in-
tracellular pathways at the posttranscriptional level. There are
many multiple putative targets for each miR, and they can also
change between cell types and over time. It appears that they
may play an important role in cell physiology (102). miRs play
arole in both embryonic development and kidney disease pro-
cesses. Their different blood or urine levels have been associat-
ed with several specific kidney diseases in animal models and
human studies (103-105). miRs may play a crucial role in the
regulation of profibrotic calcium signaling depending on some
studies that have investigated their effect in ADPKD (106). Se-
rum miR-3907 levels were recently demonstrated to be associ-
ated with disease progression of ADPKD (107). Indeed, urine has
been widely used as a specimen to detect protein biomarkers
in polycystic kidney disease (89). Ben-Dov et al. (108) evaluat-
ed the miRs in urine specimens and kidney epithelial cells of
patients with ADPKD and without ADPKD. They demonstrated
that miRNA previously implicated as kidney tumor suppressors
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Figure 1. The evaluation of urinary specimen in autosomal dominant polycystic kidney disease.

(miR-1 and miR-133), as well as miRNA of presumed inflamma-
tory and fibroblast cell origin (miR-223/miR-199), is dysregu-
lated in ADPKD urine specimens compared with other patients
with CKD (109).

Recently, urine proteome or peptidome markers have become
clinically useful as urine biomarkers. Kistler et al. (89) defined
the urinary biomarker profile of ADPKD and found a low molec-
ular (<15 kDa) proteome fraction in the urine. Bakun et al. (109)
studied the proteins of masses >10 kDa by using two-dimen-
sional tryptic peptides separation. They showed that an ADP-
KD-characteristic footprint of 155 proteins significantly up- or
down-regulated in the urine specimens of patients with ADPKD.
There were significant differences in proteins of complement
system, apolipoproteins, serpins, some growth factors, colla-
gens, and extracellular matrix components in patients with AD-
PKD compared with those in healthy controls (109).

Epidermal growth factor (EGF) receptor pathway is shown to
be involved with growth, migration, and proliferation of renal
tubular cells (110). Dysregulation of this pathway has been sug-
gested to play a role in the pathogenesis of ADPKD (64, 67). Hep-
arin-binding EGF-like growth factor (HB-EGF) is known to be a
more potent mitogen for renal tubular epithelia than EGF (111).
Harskamp et al. (112) reported that EGF receptor ligands, such
as HB-EGF, EGF, and transforming growth factor-a, are mea-
sured in blood and urine concentrations in patients with ADPKD
at baseline and after treatment with a vasopressin V2 receptor
antagonist (V2RA). Higher urinary HB-EGF excretion was found
to be correlated with the severity of the disease in patients with

ADPKD. Interestingly, HB-EGF excretion increased during V2RA
treatment. In addition, further studies are needed to explain
this result in patients with ADPKD.

Finally, Kawano et al. (113) analyzed many urine biomarkers in
patients with ADPKD and compared them with those in healthy
controls. There were significant differences between healthy
subjects and patients with ADPKD with respect to several bio-
markersincluding von Willebrand factor, IL-8, macrophage colo-
ny-stimulating factor, interferon receptor 2, perpetual flowering
1, trefoil factor family 3, hepatocyte growth factor, multicopper
oxidase-1, 8-hydroxydeoxyguanosine, NGAL, liver-type fatty ac-
id-binding protein (L-FABP), angiotensinogen, and ceruloplas-
min. The levels of markers for multiple parts of the nephron are
increased in patients with ADPKD. In addition to the measure-
ment of UAE, the measurement of urinary 3 (2)-microglobulin,
kidney injury molecule-1, heart-type-FABP, monocyte chemo-
attractant protein-1, N-acetyl-B-d-glucosaminidase, and endo-
thelin-1 could be of value for determining the disease severity
in patients with ADPKD (76, 79, 114-116).

CONCLUSION

Important new findings of the urine evaluation have improved
our understanding with several pathogenic mechanisms in-
cluding inflammation, cystogenesis, and disease progression in
patients with ADPKD. Recent insights have highlighted the fact
that urine concentration defect, hematuria, proteinuria, pyuria,
urine calculi, and several urine biomarkers are not only patho-
logical findings but also help clinicians with respect to disease
progression during the follow-up of patients with ADPKD (Fig-
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ure 1). In addition, several urine biomarkers in ADPKD were
found to be associated with the severity of the disease and may
be important in the near future to predict disease progression.
Further studies are needed to clarify the mechanisms that lead
to urine abnormalities of ADPKD from other kidney diseases.
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